3 Número de goles marcados por tu equipo favorito en la última temporada.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3 Número de goles marcados por tu equipo favorito en la última temporada."

Transcripción

1 1. Indica que variables son cualitativas y cuales cuantitativas: 1 Comida Favorita. 2 Profesión que te gusta. 3 Número de goles marcados por tu equipo favorito en la última temporada. 4 Número de alumnos de tu Instituto. 5 El color de los ojos de tus compañeros de clase. 6 Coeficiente intelectual de tus compañeros de clase. 2. De las siguientes variables indica cuáles son discretas y cuales continuas. 1 Número de acciones vendidas cada día en la Bolsa. 2Temperaturas registradas cada hora en un observatorio. 3 Período de duración de un automóvil. 4 El diámetro de las ruedas de varios coches. 5 Número de hijos de 50 familias. 6 Censo anual de los españoles. 3. Clasificar las siguientes variables en cualitativas y cuantitativas discretas o continuas. 1 La nacionalidad de una persona. 2 Número de litros de agua contenidos en un depósito. 3 Número de libros en un estante de librería. 4 Suma de puntos tenidos en el lanzamiento de un par de dados. 5 La profesión de una persona. 6 El área de las distintas baldosas de un edificio. 4. Las puntuaciones obtenidas por un grupo en una prueba han sido: 15, 20, 15, 18, 22, 13, 13, 16, 15, 19, 18, 15, 16, 20, 16, 15, 18, 16, 14, 13. Construir la tabla de distribución de frecuencias y dibuja el polígono de frecuencias. 5. El número de estrellas de los hoteles de una ciudad viene dado por la siguiente serie:

2 3, 3, 4, 3, 4, 3, 1, 3, 4, 3, 3, 3, 2, 1, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 2, 2, 4, 1. Construir la tabla de distribución de frecuencias y dibuja el diagrama de barras. 6. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes: 5, 2, 4, 9, 7, 4, 5, 6, 5, 7, 7, 5, 5, 2, 10, 5, 6, 5, 4, 5, 8, 8, 4, 0, 8, 4, 8, 6, 6, 3, 6, 7, 6, 6, 7, 6, 7, 3, 5, 6, 9, 6, 1, 4, 6, 3, 5, 5, 6, 7. Construir la tabla de distribución de frecuencias y dibuja el diagrama de barras. 7. Los pesos de los 65 empleados de una fábrica vienen dados por la siguiente tabla: Peso [50, 60) [60, 70) [70, 80) [80,90) [90, 100) [100, 110) [110, 120) fi Construir la tabla de frecuencias. 2 Representar el histograma y el polígono de frecuencias. 8. Los 40 alumnos de una clase han obtenido las siguientes puntuaciones, sobre 50, en un examen de Física. 3, 15, 24, 28, 33, 35, 38, 42, 23, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, Construir la tabla de frecuencias. 2 Dibujar el histograma y el polígono de frecuencias. 9. Sea una distribución estadística que viene dada por la siguiente tabla: xi fi Calcular: 1 La moda, mediana y media. 2 El rango, desviación media, varianza y desviación típica. 10.Calcular la media, la mediana y la moda de la siguiente serie de números: 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, Hallar la varianza y la desviación típica de la siguiente serie de datos:

3 12, 6, 7, 3, 15, 10, 18, Hallar la media, mediana y moda de la siguiente serie de números: 3, 5, 2, 6, 5, 9, 5, 2, 8, Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes: 2, 3, 6, 8, , 6, 7, 3, 15, 10, 18, Se ha aplicado un test a los empleados de una fábrica, obteniéndose la siguiente tabla: fi [38, 44) 7 [44, 50) 8 [50, 56) 15 [56, 62) 25 [62, 68) 18 [68, 74) 9 [74, 80) 6 Dibujar el histograma y el polígono de frecuencias acumuladas. 15. Dadas las series estadísticas: 3, 5, 2, 7, 6, 4, 9. 3, 5, 2, 7, 6, 4, 9, 1. Calcular: La moda, la mediana y la media. La desviación media, la varianza y la desviación típica. Los cuartiles 1º y 3º. Los deciles 2º y 7º. Los percentiles 32 y 85.

4 16. Una distribución estadística viene dada por la siguiente tabla: [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) fi Hallar: La moda, mediana y media. El rango, desviación media y varianza. Los cuartiles 1º y 3º. Los deciles 3º y 6º. Los percentiles 30 y Dada la distribución estadística: [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ) fi Calcular: La mediana y moda. Cuartil 2º y 3º. Media. Indica que variables son cualitativas y cuales cuantitativas: 1 Comida Favorita. Cualitativa. 2 Profesión que te gusta. Cualitativa. 3 Número de goles marcados por tu equipo favorito en la última temporada. Cuantitativa.

5 4 Número de alumnos de tu Instituto. Cuantitativa. 5 El color de los ojos de tus compañeros de clase. Cualitativa. 6 Coeficiente intelectual de tus compañeros de clase. Cuantitativa De las siguientes variables indica cuáles son discretas y cuales continuas. 1 Número de acciones vendidas cada día en la Bolsa. Discreta 2Temperaturas registradas cada hora en un observatorio. Continua 3 Período de duración de un automóvil. Continua 4 El diámetro de las ruedas de varios coches. Continua 5 Número de hijos de 50 familias. Discreta 6 Censo anual de los españoles. Discreta Clasificar las siguientes variables en cualitativas y cuantitativas discretas o continuas. 1 La nacionalidad de una persona. Cualitativa 2 Número de litros de agua contenidos en un depósito. Cuantitativa continua. 3 Número de libro en un estante de librería.

6 Cuantitativa discreta. 4 Suma de puntos tenidos en el lanzamiento de un par de dados. Cuantitativa discreta. 5 La profesión de una persona. Cualitativa. 6 El área de las distintas baldosas de un edificio. Cuantitativa continua. aciones obtenidas por un grupo de en una prueba han sido: 15, 20, 15, 18, 22, 13, 13, 16, 15, 19, 18, 15, 16, 20, 16, 15, 18, 16, 14, 13. Construir la tabla de distribución de frecuencias y dibuja el polígono de frecuencias. xi Recuento fi Fi ni Ni 13 III I IIII III I II I Polígono de frecuencias

7 El número de estrellas de los hoteles de una ciudad viene dado por la siguiente serie: 3, 3, 4, 3, 4, 3, 1, 3, 4, 3, 3, 3, 2, 1, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 2, 2, 4, 1. Construir la tabla de distribución de frecuencias y dibuja el diagrama de barras. xi Recuento xi Fi ni Ni IIII Diagrama de barras

8 Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes: 5, 2, 4, 9, 7, 4, 5, 6, 5, 7, 7, 5, 5, 2, 10, 5, 6, 5, 4, 5, 8, 8, 4, 0, 8, 4, 8, 6, 6, 3, 6, 7, 6, 6, 7, 6, 7, 3, 5, 6, 9, 6, 1, 4, 6, 3, 5, 5, 6, 7. Construir la tabla de distribución de frecuencias y dibuja el diagrama de barras. xi fi Fi ni Ni

9 Diagrama de barras Los pesos de los 65 empleados de una fábrica vienen dados por la siguiente tabla: Peso [50, 60) [60, 70) [70, 80) [80,90) [90, 100) [100, 110) [110, 120) fi Construir la tabla de frecuencias. 2 Representar el histograma y el polígono de frecuencias. xi fi Fi ni Ni [50, 60) [60, 70) [70, 80) [80,90) [90, 100) [100, 110) [110, 120) Histograma

10 Los 40 alumnos de una clase han obtenido las siguientes puntuaciones, sobre 50, en un examen de Física. 3, 15, 24, 28, 33, 35, 38, 42, 23, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, Construir la tabla de frecuencias. 2 Dibujar el histograma y el polígono de frecuencias. xi fi Fi ni Ni [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35, 40) [40, 45) [45, 50)

11 40 1 Histograma Sea una distribución estadística que viene dada por la siguiente tabla: xi fi Calcular: 1 La moda, mediana y media. 2 El rango, desviación media, varianza y desviación típica. xi fi Fi xi fi x x x x fi xi 2 fi

12 Moda Mo = 67 Mediana 102/2 = 50 Me = 67 Media Desviación media Rango r = = 12 Varianza Desviación típica Calcular la media, la mediana y la moda de la siguiente serie de números: 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, 4. xi fi Fi xi fi

13 Moda Mo = 5 Mediana 20/2 = 10 Me = 5 Media 11 Hallar la varianza y la desviación típica de la siguiente serie de datos: 12, 6, 7, 3, 15, 10, 18, Hallar la varianza y la desviación típica de la siguiente serie de datos: 12, 6, 7, 3, 15, 10, 18, 5.

14 13. Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes: 2, 3, 6, 8, , 6, 7, 3, 15, 10, 18, 5. 2, 3, 6, 8, 11. Media Desviación media Varianza Desviación típica 12, 6, 7, 3, 15, 10, 18, 5. Media Desviación media Varianza

15 Desviación típica 14. Se ha aplicado test a los empleados de una fábrica, obteniéndose las siete tabla: fi [38, 44) 7 [44, 50) 8 [50, 56) 15 [56, 62) 25 [62, 68) 18 [68, 74) 9 [74, 80) 6 Dibujar el histograma y el polígono de frecuencias acumuladas. fi Fi [38, 44) 7 7 [44, 50) 8 15 [50, 56) [56, 62) [62, 68) [68, 74) 9 82 [74, 80) 6 88

16 15 Dadas las series estadísticas: 3, 5, 2, 7, 6, 4, 9. 3, 5, 2, 7, 6, 4, 9, 1. Calcular: La moda, la mediana y la media. La desviación media, la varianza y la desviación típica. Los cuartiles 1º y 3º. Los deciles 2º y 7º. Los percentiles 32 y 85. 3, 5, 2, 7, 6, 4, 9. Moda No existe moda porque todas las puntuaciones tienen la misma frecuencia. Mediana

17 2, 3, 4, 5, 6, 7, 9. Me = 5 Media Varianza Desviación típica Desviación media Rango r = 9 2 = 7 Cuartiles Deciles 7 (2/10) = 1.4 D2 = 3 7 (7/10) = 4.9 D7 = 6 Percentiles 7 (32/100) = 2,2 P32 = 4 7 (85/100) = 5.9 P85 = 7 3, 5, 2, 7, 6, 4, 9, 1.

18 Moda No existe moda porque todas las puntuaciones tienen la misma frecuencia. Mediana Media Varianza Desviación típica Desviación media Rango r = 9-1 = 8 Cuartiles Deciles 8 (2/10) = 1.6 D2 = 2 8 (7/10) = 5.6 D7 = 6

19 Percentiles 8 (32/100) = 2.56 P32 = 3 8 (85/100) = 6.8 P85 = 7 16 Una distribución estadística viene dada por la siguiente tabla: [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) fi Hallar: La moda, mediana y media. El rango, desviación media y varianza. Los cuartiles 1º y 3º. Los deciles 3º y 6º. Los percentiles 30 y 70. xi fi Fi xi fi x x fi xi 2 fi [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) Moda Mediana

20 Media Desviación media Varianza Desviación típica Cuartiles Deciles Percentiles 17 Dada la distribución estadística: [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, )

21 fi Calcular: La mediana y moda. Cuartil 2º y 3º. Media. xi fi Fi [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, ) Moda Mediana Cuartiles Media

22 No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo. 1. A un conjunto de 5 números cuya media es 7.31 se le añaden los números 4.47 y Cuál es la media del nuevo conjunto de números? 2. Un dentista observa el número de caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla: Nº de caries fi ni x z y Completar la tabla obteniendo los valores de x, y, z. 2. Hacer un diagrama de sectores. 3. Calcular el número medio de caries. 3. Se tiene el siguiente conjunto de 26 datos: 10, 13, 4, 7, 8, 11 10, 16, 18, 12, 3, 6, 9, 9, 4, 13, 20, 7, 5, 10, 17, 10, 16, 14, 8, 18 Obtener su mediana y cuartiles. 4. Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento de andar por primera vez: Meses Niños

23 Dibujar el polígono de frecuencias. 2. Calcular la moda, la mediana, la media y la varianza. 5. Completar los datos que faltan en la siguiente tabla estadística: xi fi Fi ni Calcular la media, mediana y moda de esta distribución. 6. Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide: 1. Calcular su media y su varianza. 2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y desviación típica. 7. El resultado de lanzar dos dados 120 veces viene dado por la tabla: Sumas Veces Calcular la media y la desviación típica. 2. Hallar el porcentaje de valores comprendidos en el intervalo (x σ, x + σ). 8. Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:

24 Altura [170, 175) [175, 180) [180, 185) [185, 190) [190, 195) [195, 2.00) Nº de jugadores Calcular: 1. La media. 2. La mediana. 3. La desviación típica. 4. Cuántos jugadores se encuentran por encima de la media más una desviación típica? 9. Los resultados al lanzar un dado 200 veces vienen dados por la siguiente tabla: fi a b 35 Determinar a y b sabiendo que la puntuación media es El histograma de la distribución correspondiente al peso de 100 alumnos de Bachillerato es el siguiente: 1. Formar la tabla de la distribución. 2. Si Andrés pesa 72 kg, cuántos alumnos hay menos pesados que él? 3. Calcular la moda. 4. Hallar la mediana. 5. A partir de que valores se encuentran el 25% de los alumnos más pesados?

25 11. De esta distribución de frecuencias absolutas acumuladas, calcular: Edad Fi [0, 2) 4 [2, 4) 11 [4, 6) 24 [6, 8) 34 [8, 10) Media aritmética y desviación típica. 2. Entre qué valores se encuentran las 10 edades centrales? 3. Representar el polígono de frecuencias absolutas acumuladas. 12. Una persona A mide 1.75 m y reside en una ciudad donde la estatura media es de 1.60 m y la desviación típica es de 20 cm. Otra persona B mide 1.80 m y vive en una ciudad donde la estatura media es de 1.70 m y la desviación típica es de 15 cm. Cuál de las dos será más alta respecto a sus conciudadanos? 13. Un profesor ha realizado dos tests a un grupo de 40 alumnos, obteniendo los siguientes resultados: para el primer test la media es 6 y la desviación típica 1.5. Para el segundo test la media es 4 y la desviación típica 0.5. Un alumno obtiene un 6 en el primero y un 5 en el segundo. En relación con el grupo, en cuál de los dos tests obtuvo mejor puntuación? 14 La asistencia de espectadores a las 4 salas de un cine un determinado día fue de 200, 500, 300 y 1000 personas. 1. Calcular la dispersión del número de asistentes. 2. Calcular el coeficiente de variación. 3. Si el día del espectador acuden 50 personas más a cada sala, qué efecto tendría sobre la dispersión? 1. A un conjunto de 5 números cuya media es 7.31 se le añaden los números 4.47 y Cuál es la media del nuevo conjunto de números?

26 2. Un dentista observa el número de caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla: Nº de caries fi ni x z y Completar la tabla obteniendo los valores x, y, z. 2. Hacer un diagrama de sectores. 3. Calcular el número medio de caries. 1. Tabla La suma de las frecuencias relativas ha de ser igual a 1: z = z = 1 z = 0.35 La frecuencia relativa de un dato es igual su frecuencia absoluta dividida entre 100, que es la suma de las frecuencias absolutas. Nº de caries fi ni fi ni

27 Diagrama de sectores Calculamos los grados que corresponden a cara frecuencia absoluta = 90º = 72º = 126º = 54º = 18º 3. Media aritmética 3. Se tiene el siguiente conjunto de 26 datos: 10, 13, 4, 7, 8, 11 10, 16, 18, 12, 3, 6, 9, 9, 4, 13, 20, 7, 5, 10, 17, 10, 16, 14, 8, 18 Obtener su mediana y cuartiles. En primer lugar ordenamos los datos de menor a mayor: 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 12, 13, 13, 14, 16, 16, 17, 18, 18, 20

28 Mediana 26/2 = 13. Como el número de datos es par la mediana es la media de las dos puntuaciones centrales: Cuartiles 26/4 = 6.5 Q1 = 7 Q2 = Me = 10 (26 3)/4 = 19.5 Q3 = Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento de andar por primera vez: Meses Niños Dibujar el polígono de frecuencias. 2. Calcular la moda, la mediana, la media y la varianza. Polígono de frecuencias

29 xi fi Ni xi fi x²i fi Moda Mo = 12 Mediana 50/2 = 25 Me = 12 Media aritmética Varianza

30 5. Completar los datos que faltan en la siguiente tabla estadística: xi fi Fi ni Calcular la media, mediana y moda de esta distribución. Tabla Primera fila: F1 = 4 Segunda fila: F2 = = 8 Tercera fila: Cuarta fila: N4 = = 23 Quinta fila:

31 Sexta fila: 28 + n8 = 38 n8 = 10 Séptima fila: Octava fila: N8 = N = 50 n8 = = 5 xi fi Fi ni xi fi Media artmética Mediana 50/2 = 25 Me = 5 Moda

32 Mo = 6 6. Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide: 1. Calcular su media y su varianza. 2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y varianza. xi xi El resultado de lanzar dos dados 120 veces viene dado por la tabla: Sumas Veces Calcular la media y la desviación típica. 2. Hallar el porcentaje de valores comprendidos en el intervalo (x σ, x + σ). xi fi xi fi xi 2 fi

33 x σ = x + σ = Los valores comprendidos en el intervalo (4.591, 9.459) son los correspondientes a las sumas de 5, 6, 7, 8 y = Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla: Altura [170, 175) [175, 180) [180, 185) [185, 190) [190, 195) [195, 2.00) Nº de jugadores Calcular: 1. La media.

34 2. La mediana. 3. La desviación típica. 4. Cuántos jugadores se encuentran por encima de la media más una desviación típica? xi fi Fi xi fi xi 2 fi [1.70, 1.75) [1.75, 1.80) [1.80, 1.85) [1.85, 1.90) [1.90, 1.95) [1.95, 2.00) Media Mediana Desviación típica 4 x + σ = = Este valor pertenece a un percentil que se encuentra en el penúltimo intervalo.

35 Sólo hay 3 jugadores por encima de x + σ. 9. Los resultados al lanzar un dado 200 veces vienen dados por la siguiente tabla: fi a b 35 Determinar a y b sabiendo que la puntuación media es 3.6. xi fi xi fi 1 a a b 5b a + b a + 5b a = 29 b = El histograma de la distribución correspondiente al peso de 100 alumnos de Bachillerato es el siguiente:

36 1. Formar la tabla de la distribución. 2. Si Andrés pesa 72 kg, cuántos alumnos hay menos pesados que él? 3. Calcular la moda. 4. Hallar la mediana. 5. A partir de que valores se encuentran el 25% de los alumnos más pesados? 1 xi fi Fi [60,63 ) [63, 66) [66, 69) [69, 72) [72, 75) = 92 alumnos más ligeros que Andrés. Moda

37 Mediana 5 El valor a partir del cual se encuentra el 25% de los alumnos más pesados es el cuartil tercero. 11 De esta distribución de frecuencias absolutas acumuladas, calcular: Edad Fi [0, 2) 4 [2, 4) 11 [4, 6) 24 [6, 8) 34 [8, 10) Media aritmética y desviación típica. 2. Entre qué valores se encuentran las 10 edades centrales? 3. Representar el polígono de frecuencias absolutas acumuladas. xi fi Fi xi fi xi 2 fi [0, 2) [2, 4) [4, 6) [6, 8) [8, 10) Media y desviación típica

38 2 Los 10 alumnos representan el 25% central de la distribución. Debemos hallar P37.5 y P62.5. Las 10 edades centrales están en el intervalo: [4.61, 6.2]. Polígono de frecuencias 12 Una persona A mide 1.75 m y reside en una ciudad donde la estatura media es de 1.60 m y la desviación típica es de 20 cm. Otra persona B mide 1.80 m y vive en una ciudad donde la estatura media es de 1.70 m y la desviación típica es de 15 cm. Cuál de las dos será más alta respecto a sus conciudadanos?

39 La persona A es más alta respecto a sus conciudadanos que la persona B. 13. Un profesor ha realizado dos tests a un grupo de 40 alumnos, obteniendo los siguientes resultados: para el primer test la media es 6 y la desviación típica 1.5. Para el segundo test la media es 4 y la desviación típica 0.5. Un alumno obtiene un 6 en el primero y un 5 en el segundo. En relación con el grupo, en cuál de los dos tests obtuvo mejor puntuación? En el segundo test consigue mayor puntuación. 14. La asistencia de espectadores a las 4 salas de un cine un determinado día fue de 200, 500, 300 y 1000 personas. 1. Calcular la dispersión del número de asistentes. 2. Calcular el coeficiente de variación. 3. Si el día del espectador acuden 50 personas más a cada sala, qué efecto tendría sobre la dispersión? Desviación típica Coeficiente de variación 3

40 Si todas las salas tienen un incremento de 50 personas, la media aritmética también se ve incrementada en 50 personas. La desviación típica no varía, ya que sumamos la misma cantidad a cada dato de la serie. La dispersión relativa es menor en el segundo caso. Gráficas y funciones. Ejercicios y problemas resueltos 2 Representa las siguientes funciones, sabiendo que: 1 Tiene pendiente 3 y ordenada en el origen 1. y = 3x 1 x y = 3x Tiene por pendiente 4 y pasa por el punto ( 3, 2).

41 y = 4 x + n 2 = 4 ( 3) + n n = 14 y = 4x + 14 x y = 4x Gráficas y funciones. Ejercicios y problemas resueltos 3 Tres kilogramos de boquerones valen 18. Escribe y representa la función que define el coste de los boquerones en función de los kilogramos comprados. 18/3 = 6 y = 6x

42 Gráficas y funciones. Ejercicios y problemas resueltos 4 En las 10 primeras semanas de cultivo de una planta, que medía 2 cm, se ha observado que su crecimiento es directamente proporcional al tiempo, viendo que en la primera semana ha pasado a medir 2.5 cm. Establecer una función a fin que dé la altura de la planta en función del tiempo y representar gráficamente. Altura inicial = 2 cm Crecimiento semanal = = 0.5 y = 0.5x + 2

43 Gráficas y funciones. Ejercicios y problemas resueltos 5 Cuando se excava hacia el interior de la tierra, la temperatura aumenta con arreglo a la siguiente fórmula: t = h. Donde t es la temperatura alcanzada en grados centígrados y h es la profundidad, en metros, desde la corteza terrestre. Calcular: 1. Qué temperatura se alcanza a los 100 m de profundidad? t = = 16 ºC 2. Cuántos metros hay que excavar para alcanzar una temperatura de 100 ºC? 100 = h = m Gráficas y funciones. Ejercicios y problemas resueltos 6 El nivel de contaminación de una ciudad a las 6 de la mañana es de 30 partes por millón y crece de forma lineal 25 partes por millón cada hora. Sea y la contaminación en el instante t después de las 6 de la mañana. 1.Hallar la ecuación que relaciona y con t. y = t 2.Calcular el nivel de contaminación a las 4 de la tarde. Desde las 6 de la mañana a las cuatro de la tarde han transcurrido 10 horas. f(10) = = 280 Gráficas y funciones. Examen 1Representa las siguientes rectas: 1 y = 0 2 y = ¾

44 3 y = 2x 4y = ¾x 1 2Un grifo, que gotea, llena una probeta dejando caer cada minuto 0.4 cm³ de agua. Forma una tabla de valores de la función, tiempo-capacidad de agua. Representa la función y encuentra la ecuación. 3Por el alquiler de un coche cobran 100 diarios más 0.30 por kilómetro. Encuentra la ecuación de la recta que relaciona el coste diario con el número de kilómetros y represéntala. Si en un día se ha hecho un total de 300 km, qué importe debemos abonar? Gráficas y funciones. Examen resuelto 1 Representa las siguientes rectas: 1 y = 0 2 y = ¾

45 3 y = 2x x y = 2 x y = ¾x 1 x y = -¾x

46 Gráficas y funciones. Examen resuelto 2 Un grifo, que gotea, llena una probeta dejando caer cada minuto 0.4 cm³ de agua. Forma una tabla de valores de la función, tiempo-capacidad de agua. Representa la función y encuentra la ecuación. y =0.4 x Tiempo Capacidad Gráficas y funciones. Examen resuelto 3 Por el alquiler de un coche cobran 100 diarios más 0.30 por kilómetro. Encuentra la ecuación de la recta que relaciona el coste diario con el número de kilómetros y represéntala. Si en un día se ha hecho un total de 300 km, qué importe debemos abonar? y = 0.3 x +100 y = = 190

47

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA

CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA CONTENIDOS MÍNIMOS BLOQUE III: ÁLGEBRA Interpolación de términos en una sucesión. Cálculo del término general de sucesiones muy sencillas. Distinción entre progresiones aritméticas y geométricas. Interpolación

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO

ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO ESTADÍSTICA DESCRIPTIVA PARA EL TURISMO RELACIÓN DE PROBLEMAS PROPUESTOS DE UNA VARIABLE Curso académico 2004-2005 DPTO. ECONOMÍA APLICADA I 1. Obtener las frecuencias acumuladas, las frecuencias relativas

Más detalles

EJERCICIOS Tema 5 La información que recibimos

EJERCICIOS Tema 5 La información que recibimos EJERCICIOS Tema 5 La información que recibimos 1.- Califica las siguientes preguntas como abiertas o cerradas: a) Elige un lugar para tomar un baño: Playa - Piscina b) Indica que color o colores del arco

Más detalles

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD º ESO UNIDAD 1 ESTADÍSTICA Y PROBABILIDAD 1 1.- CONCEPTOS BÁSICOS Estadística.- Es la ciencia que estudia conjuntos de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas

Más detalles

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos de sus puntos. 2º. Relaciona cada texto

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

1 Comida Favorita.Cualitativa. 2 Profesión que te gusta.cualitativa. 3 Número de goles marcados por tu equipo favorito en la última

1 Comida Favorita.Cualitativa. 2 Profesión que te gusta.cualitativa. 3 Número de goles marcados por tu equipo favorito en la última 1.-Indica que variables son cualitativas y cuales cuantitativas: 1 Comida Favorita.Cualitativa. 2 Profesión que te gusta.cualitativa. 3 Número de goles marcados por tu equipo favorito en la última temporada.cuantitativa.

Más detalles

5 2,7; ; ; 3; 3,2

5 2,7; ; ; 3; 3,2 Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

PENDIENTES 3º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 3º ESO Curso

PENDIENTES 3º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 3º ESO Curso 014 015 Preparación del tercer eamen de recuperación de MATEMÁTICAS DE 3º ESO Curso 013-014 PENDIENTES 3º ESO Tercer eamen DEPARTAMENTO DE MATEMÁTICAS Curso 013-014 1.- Halla los puntos de corte de las

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

Ejercicios de estadística.

Ejercicios de estadística. Ejercicios de estadística..- Los siguientes números son el número de horas que intervienen alumnos en hacer deporte durante un mes:, 7,,, 5, 6, 7, 9,,, 5, 6, 6, 6, 7, 8,,, 5, 8 a) Calcula las tablas de

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es: Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,

Más detalles

PÁGINA 120. Pág. 1. Unidad 12. Estadística

PÁGINA 120. Pág. 1. Unidad 12. Estadística 1 Soluciones a las actividades de cada epígrafe PÁGINA 1 1 Un fabricante de tornillos desea hacer un control de calidad. Para ello, recoge 1 de cada tornillos producidos y lo analiza. a) Cuál es la población?

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Agrupa los resultados por lotes: Rechazados, revisables y aceptados y:

Agrupa los resultados por lotes: Rechazados, revisables y aceptados y: Tema 2 1.- Clasifica en discretas o continuas las siguientes variables: a) Número de habitantes por kilómetro cuadrado b) Número de bacterias de cierto tipo, por mililitro c) Densidad de diferentes muestras

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Angel Francisco Arvelo Luján es un Profesor Universitario Venezolano en el área de Probabilidad y Estadística, con más de 40 años de experiencia en las más reconocidas universidades

Más detalles

Ejercicios para la recuperación de matemáticas de 2º de ESO.

Ejercicios para la recuperación de matemáticas de 2º de ESO. Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 95 _ 039-0.qxd /9/07 5:07 Página 07 Estadística INTRODUCCIÓN RESUMEN DE LA UNIDAD El objetivo de esta unidad es acercar a los alumnos a las interpretaciones de datos que ellos mismos pueden elaborar mediante

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

1. Definición de Estadística

1. Definición de Estadística 1. Definición de Estadística La Estadística es la parte de las Matemáticas que estudia una serie de datos, los recuenta, los ordena y los clasifica, para poder hacer comparaciones y sacar conclusiones.

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO GUÍA DE ESTADÍSTICA GRADO DÉCIMO MEDIDAS DE POSICIÓN Las medidas de posición son medidas que permiten dividir el conjunto de datos en partes porcentuales. Estas medidas se usan para describir la posición

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE LA ASIGNATURA ESTADÍSTICA I CLAVE: MAT 131 ; PRE REQ.: MAT 111 ; No. CRED.: 4 I. PRESENTACIÓN: Este

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

4 E.M. Curso: Ejercicios de Estadísticas NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas

4 E.M. Curso: Ejercicios de Estadísticas NOMBRE: 4º. Colegio SSCC Concepción - Depto. de Matemáticas. Guía N. Unidad de Aprendizaje: Estadísticas Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Estadísticas Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Comprensión, Aplicación/ Valores/ Actitudes: Respeto,

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

GUIA N 1: Estadistica descriptiva.

GUIA N 1: Estadistica descriptiva. UNIVERSIDAD DE VALPARAÍSO Ingeniería Civil, primer semestre 2016 GUIA N 1: Estadistica descriptiva. EJERCICIO 1 Clasificar cada una de las siguientes variables: si es cualitativa (nominal u ordinal) o

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

PRUEBA LIBRE DE GRADUADO EN EDUCACIÓN SECUNDARIA OBLIGATORIA

PRUEBA LIBRE DE GRADUADO EN EDUCACIÓN SECUNDARIA OBLIGATORIA FORMACIÓN BÁSICA DE PERSONAS ADULTAS PRUEBA LIBRE DE GRADUADO EN EDUCACIÓN SECUNDARIA OBLIGATORIA Convocatoria de Septiembre de 2010 DATOS PERSONALES NOMBRE Y APELLIDOS Nº DE DNI / NIE/ PASAPORTE FECHA

Más detalles

FICHA DE REPASO: ESTADÍSTICA

FICHA DE REPASO: ESTADÍSTICA FICHA DE REPASO: ESTADÍSTICA 1. Indica la población y la muestra de los siguientes estudios estadísticos: a) El número de móviles de los alumnos de 2º de la E.S.O de nuestro instituto. b) La altura de

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la 1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,

Más detalles

Guía de Ejercicios Estadística. Nombre del Estudiante:

Guía de Ejercicios Estadística. Nombre del Estudiante: Colegio Raimapu Departamento de Matemática Guía de Ejercicios Estadística Nombre del Estudiante: V Medio Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Estadística descriptiva y métodos diagnósticos

Estadística descriptiva y métodos diagnósticos 2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

RANGO Y DISTRIBUCIÓN DE FRECUENCIAS

RANGO Y DISTRIBUCIÓN DE FRECUENCIAS RANGO Y DISTRIBUCIÓN DE FRECUENCIAS El rango o recorrido de la distribución es la amplitud del intervalo en que se mueven los valores. Se calcula restando los valores etremos. La frecuencia es el número

Más detalles

ESTADÍSTICA. b) Moda:... Mediana:... Media:... nº llamadas nº personas a) Calcula la media aritmética del nº de llamadas:

ESTADÍSTICA. b) Moda:... Mediana:... Media:... nº llamadas nº personas a) Calcula la media aritmética del nº de llamadas: 1 ESTADÍSTICA 1. - Ordena los siguientes datos de menor a mayor: a) 326-189 - 238-370 - 127-391 - 215... Mediana:... Media aritmética:... b) 517-291 - 333-286 - 459-268 - 534-318... Mediana:... Media aritmética:...

Más detalles

PROBLEMAS ESTADÍSTICA I

PROBLEMAS ESTADÍSTICA I PROBLEMAS ESTADÍSTICA I INGENIERÍA TÉCNICA EN INFORMÁTICA CURSO 2002/2003 Estadstica Descriptiva Unidimensional 1. Un edificio tiene 45 apartamentos con el siguiente número de inquilinos: 2 1 3 5 2 2 2

Más detalles

4 Estos son los resultados de una encuesta realizada en una comunidad autónoma sobre la actuación de su presidente.

4 Estos son los resultados de una encuesta realizada en una comunidad autónoma sobre la actuación de su presidente. 1 Di, en cada caso, cuál es la población y cuál la variable que se quiere estudiar. Especifica si es una variable cualitativa o cuantitativa, determinando, en este último caso, si es discreta o continua:

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia

Más detalles

1.- Construye la tabla de frecuencias para las notas de una prueba de las 44 alumnas de un curso. 6,8 3,2 6,0 3,4 6,5 3,7 7,0 5,0 6,3 3,8 2,8

1.- Construye la tabla de frecuencias para las notas de una prueba de las 44 alumnas de un curso. 6,8 3,2 6,0 3,4 6,5 3,7 7,0 5,0 6,3 3,8 2,8 PROBABILIDAD Y ESTADÍSTICA TABLAS DE FRECUENCIA 1.- Construye la tabla de frecuencias para las notas de una prueba de las 44 alumnas de un curso. 6,8 3,2 6,0 3,4 6,5 3,7 7,0 5,0 6,3 3,8 2,8 5,5 3,8 6,5

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE A los padres del alumno/a de º de la ESO Puesto que su hijo no ha superado los objetivos de º de la ESO en el área de Matemáticas, es necesario

Más detalles

MATEMÁTICAS 2º ESO. BLOQUE 9. FUNCIONES, ESTADÍSTICA Y PROBABILIDAD. (En el libro Temas 8, 9 y 10, páginas 141, 159 y 177)

MATEMÁTICAS 2º ESO. BLOQUE 9. FUNCIONES, ESTADÍSTICA Y PROBABILIDAD. (En el libro Temas 8, 9 y 10, páginas 141, 159 y 177) MATEMÁTICAS 2º ESO. BLOQUE 9. FUNCIONES, ESTADÍSTICA Y PROBABILIDAD. (En el libro Temas 8, 9 y 10, páginas 141, 159 y 177) 1. Funciones. 1.1. Coordenadas en el plano. 1.2. Definición de función. 1.3. Intervalos.

Más detalles

MATEMÁTICAS, 4º ESO Opción A. Batería de ejercicios de recuperación Septiembre

MATEMÁTICAS, 4º ESO Opción A. Batería de ejercicios de recuperación Septiembre MATEMÁTICAS, 4º ESO Opción A Fecha: Grupo: Nombre: Nº: Batería de ejercicios de recuperación Septiembre 1. Realiza estas operaciones: a) 27: 9 1 4 2 b) 3 [ 3 3 : 2 5 ] c) 57 1 8 : 11 1 5 1 d) [49: 1 2

Más detalles

MATEMATICAS APLICADAS. 3º ESO PENDIENTE Cuadernillo Parte 1

MATEMATICAS APLICADAS. 3º ESO PENDIENTE Cuadernillo Parte 1 MATEMATICAS APLICADAS 3º ESO PENDIENTE Cuadernillo Parte 1 Estadística. Probabilidad. Números Racionales. Potencias y notación científica. Polinomios. Departamento de Matemáticas 1/12 ESTADÍSTICA 1.- Indica

Más detalles

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA INSTRUCCIONES: Escribe el enunciado del problema con su procedimiento correspondiente. ENCIERRA TUS RESPUESTAS. PROBLEMA

Más detalles

173 ESO. Actividad en el día. Seguridad en el bricolaje:

173 ESO. Actividad en el día. Seguridad en el bricolaje: Seguridad en el bricolaje: 173 ESO «Para no golpearse con el martillo en los dedos al calvar un clavo en la pared, basta sostener el clavo con las dos manos» Actividad en el día Comida 8% Libre 21% Est

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes No sé si te habrás parado a pensar que todos formamos parte de estudios de empresas, gobiernos o instituciones.

Más detalles

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos:

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: ESTADISTICA Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: a) Estadística como enumeración de datos. b) Estadística como descripción, es decir, a través de un análisis

Más detalles

SOLUCIONARIO Medidas de tendencia central y posición

SOLUCIONARIO Medidas de tendencia central y posición SOLUCIONARIO Medidas de tendencia central y posición SGUICEG046EM32-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Medidas de tendencia central y posición Ítem Alternativa 1 C 2 E Aplicación 3 E 4 E Comprensión

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

1.- Diagrama de barras

1.- Diagrama de barras 1.- Diagrama de barras Un diagrama de barras se utiliza para de presentar datos cualitativos o datos cuantitativos de tipo discreto (variables tipo II). Se representan sobre unos ejes de coordenadas, en

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Apuntes y ejercicios de Estadística para 2º E.S.O

Apuntes y ejercicios de Estadística para 2º E.S.O Apuntes y ejercicios de Estadística para 2º E.S.O 1 Introducción La Estadística es la ciencia que se encarga de recoger, organizar, describir e interpretar datos referidos a distintos fenómenos para, posteriormente,

Más detalles

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Duración: 2 horas pedagógicas. Una muestra conveniente

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Duración: 2 horas pedagógicas. Una muestra conveniente PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Tercero I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas Una muestra conveniente II. APRENDIZAJES ESPERADOS COMPETENCIA CAPACIDADES ACTÚA Y PIENSA MATEMATICAMENTE

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DESCRIPTIVA DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N 1: CONCEPTOS BASICOS DEFINICIÓN DE ESTADÍSTICA La Estadística trata del recuento, ordenación y clasificación

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles