4 TRAZOS INTRODUCCIÓN


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4 TRAZOS INTRODUCCIÓN"

Transcripción

1 4 TRAZOS INTRODUCCIÓN El trazo sirve para indicar en donde se van a colocar los ejes en el terreno que están representados en el plano. Es importante que el terreno esté limpio para poder medir en forma correcta, por lo que se recomienda eliminar una capa de 10 a 30 centímetros del terreno dependiendo del tipo de suelo (blando, medio o duro) y de su uso (agrícola, corral, etc.) con la finalidad de quitar basura, raíces, etc. Una vez que el terreno está limpio es importante revisar las escrituras o contrato de compra-venta para obtener los linderos del terreno y no invadir las propiedades vecinas. Los ejes indicados en los planos son líneas que determinan el largo y ancho de lo que vamos a construir. Estos ejes se hacen con hilo el cual se fija en estacas, crucetas, postes o maderas clavadas en la pared de algún vecino, etc. Las crucetas se colocan de preferencia fuera del área que se va a construir. Para garantizar que los trazos están en ángulo recto o de 90 0 se utiliza el método 3-4-5, que es un triángulo de 3 metros de un lado, 4 metros del otro lado y 5 metros en la línea diagonal o hipotenusa 73

2 del triángulo. Otro método es el de las diagonales, el cual consiste en medir las diagonales de un rectángulo o cuadrado para verificar que tengan la misma longitud y así garantizar que los ángulos sean rectos o de En caso de que el terreno cuente con banqueta se deberá marcar un nivel de 20 centímetros que indicará el nivel de piso terminado, y de 35 a 40 centímetros cuando no existe banqueta para garantizar que el piso quede más alto con respecto a la calle para que la propiedad no se inunde en caso de lluvia. RECOMENDACIONES DE SEGURIDAD Para cargar las herramientas y materiales siempre se debe hacer con la espalda recta realizando el esfuerzo de carga con las piernas para no dañar la columna o los músculos de la espalda. Se debe procurar no inhalar el polvo de cal o cemento ya que las partículas muy finas de estos elementos se pueden alojar en los pulmones. A continuación se presenta el tema: Trazos. 74

3 Realiza la limpieza del terreno. Revisa la escritura o contrato de compra-venta, para obtener los linderos correctos del predio a construir. 75

4 Revisa la escala de los planos y las distancias de los ejes principales. Para terrenos irregulares las medidas se deben realizar en forma horizontal. 76

5 Observa en el dibujo una forma incorrecta para marcar u obtener una distancia en un terreno irregular. Para terrenos con desnivel las medidas se deben realizar en forma horizontal usando una plomada. 77

6 Observa en el dibujo una forma incorrecta para marcar u obtener una distancia en un terreno con desnivel. Trazado de ejes. Los ejes marcados en los planos pueden estar al centro del muro. 78

7 También los ejes pueden estar marcados en el extremo de afuera del muro. O también los ejes pueden estar marcados en el interior del muro. 79

8 Prepara la madera que servirá para las crucetas realizando cortes en V para que se entierren fácilmente. Mide el terreno. 80

9 Coloca el tránsito en un punto de referencia (mojonera). Nivela el equipo. 81

10 Obtén la primera línea de trazo. Gira 90 0 el tránsito para trazar una línea perpendicular con respecto a la primera línea. 82

11 Coloca una marca en la línea perpendicular. Clava unas maderas para colocar el primer puente. 83

12 Coloca unos clavos en la madera para fijar el puente. Verifica en la manguera de nivel que el agua en los 2 extremos esté a la misma altura para garantizar que no existan burbujas de aire en la manguera. 84

13 Coloca una marca de 20 cm en uno de los extremos del puente con respecto a la altura del cordón de la banqueta o 40 cm en caso de no existir cordón de banqueta. Traslada el nivel de 40 cm a los otros puentes que se vayan colocando. 85

14 Coloca el puente nivelado en la cruceta. Clava el puente en la cruceta. 86

15 Verifica que el puente quede nivelado. Identifica el punto donde se debe colocar el clavo usando el tránsito. 87

16 Coloca un clavo en la línea del eje. Coloca otros clavos en el ancho de la cepa. 88

17 Realiza las medidas para los demás ejes. Traslada la medida al suelo usando una plomada. 89

18 Coloca estacas en las distancias requeridas para los demás ejes. Coloca el tránsito en la referencia de la estaca. 90

19 Realiza el resto de las mediciones usando el tránsito. Coloca el resto de las crucetas. 91

20 Coloca los hilos en los puentes. Verifica que los hilos queden a 90 0 usando una escuadra. También puedes utilizar el método o el método de las diagonales para verificar que los hilos queden a

21 Método Marca una distancia de 3 metros sobre uno de los ejes. Marca una distancia de 4 metros sobre el eje perpendicular al trazo de 3 metros. 93

22 Verifica que entre los puntos de 3 metros a 4 metros existan 5 metros para garantizar que los ejes están perpendiculares. Método de las diagonales. Mide la distancia entre 2 vértices opuestos para obtener la primera diagonal. 94

23 Observa en la fotografía la distancia obtenida. Mide la distancia entre los otros 2 vértices para obtener la segunda diagonal. 95

24 Verifica que las 2 distancias midan lo mismo para garantizar que los ángulos del rectángulo o cuadrado están a Observa en la fotografía la colocación de los puentes. 96

25 Coloca cal en un extremo de la cepa con ayuda de uno de los hilos exteriores. Coloca cal en el otro extremo de la cepa. 97

26 Observa en la fotografía el trazado con cal para iniciar la excavación. 98

6 CIMENTACIÓN CORRIDA DE CONCRETO

6 CIMENTACIÓN CORRIDA DE CONCRETO 6 CIMENTACIÓN CORRIDA DE CONCRETO CICLÓPEO, CASTILLOS Y DALA DE DESPLANTE INTRODUCCIÓN Este tipo de cimentación es rentable cuando la profundidad del suelo firme esta a una profundidad menor de 1.5 metros

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los

Más detalles

Ilustración: Mauricio Aguilera. Diseño: Miguel A. Selva R. Impresión: Impresión Comercial La Prensa.

Ilustración: Mauricio Aguilera. Diseño: Miguel A. Selva R. Impresión: Impresión Comercial La Prensa. Ilustración: Mauricio Aguilera. Diseño: Miguel A. Selva R. Impresión: Impresión Comercial La Prensa. Agradecimiento: Al Proyecto PASA-DANIDA, por el apoyo financiero brindado para la publicación del presente

Más detalles

A continuación agregamos todas las cotas parciales a nuestro ejemplo. Este plano nos da la siguiente información.

A continuación agregamos todas las cotas parciales a nuestro ejemplo. Este plano nos da la siguiente información. Cotas El plano de replanteo cuenta con un elemento gráfico, la cota que marca una medida, resumiendo el trabajo en obra y evitando posibles confusiones a la hora de necesitar una medida. Existen tres tipos

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 =

Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 = Nombre Fecha Área de Rectángulos Trabajo en Clase Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 = 7) Sobre la grilla

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

UNIDAD 5 Franjas topográficas

UNIDAD 5 Franjas topográficas UNIDAD 5 Franjas topográficas Una franja topográfica es una poligonal abierta, en la cual se levantan perfiles transversales en cada una de sus abscisas. Figura 5.1 Franja topográfica. 1 Se utilizan en

Más detalles

5 CIMENTACIÓN POR ZAPATA, PEDESTAL Y

5 CIMENTACIÓN POR ZAPATA, PEDESTAL Y 5 CIMENTACIÓN POR ZAPATA, PEDESTAL Y VIGAS INTRODUCCIÓN La cimentación por zapata, pedestal y vigas generalmente se utiliza cuando el suelo firme está a una profundidad mayor o igual a 1.5 metros, ya que

Más detalles

Nombre Grupo N.L. fecha Curso: Matemáticas 3 Apartado: 2.3, 2.4 Eje temático: FEM Tema: Formas geométricas

Nombre Grupo N.L. fecha Curso: Matemáticas 3 Apartado: 2.3, 2.4 Eje temático: FEM Tema: Formas geométricas Consigna: dibuja triángulos (de diferente tamaño) cuyos ángulos midan: a) 60º, 60º y 60º b) 90º, 45º y 45º c) 90º, 60º y 30º Consigna: agrupen sus triángulos, de acuerdo con las medidas de sus ángulos.

Más detalles

INVERNADERO DE CHAPA TRANSPARENTE SIN POSTES CENTRALES

INVERNADERO DE CHAPA TRANSPARENTE SIN POSTES CENTRALES Agencia de Extensión Rural San Martín de los Andes INVERNADERO DE CHAPA TRANSPARENTE SIN POSTES CENTRALES Orden de construcción 1º) Nivelación y trazado en escuadra Aprovechando que el ancho es de 4m,

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Prof. Mario Rodríguez Prof. Luis Unda Coordinador: Pablo Castillo Laboratorio Topografía Ing. Civil Obras Civiles

Prof. Mario Rodríguez Prof. Luis Unda Coordinador: Pablo Castillo Laboratorio Topografía Ing. Civil Obras Civiles PRÁCTICA N : 5 DURACIÓN: : 1 Clase NOMBRE : Levantamiento de lote por método de intersección de visuales o base media. LUGAR : Parque O Higgins EQUIPOS : 1 Huincha 1 Taquimetro 7 Estacas 1 Martillo 4 Piquetes

Más detalles

AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA

AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA ORIENTACIONES RESPUESTA 1 5,6,7 ó -5,-6,-7 trabajo. Excelente. Buen 1. Hallar tres números enteros consecutivos sabiendo que

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

ESCUELA SECU DARIA TEC ICA 40 02DST0041G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO

ESCUELA SECU DARIA TEC ICA 40 02DST0041G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO ESCUELA SECU DARIA TEC ICA 40 0DST004G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO. Señala con una cuáles de las epresiones representan el área de la figura. y 6 a) ( 6 +

Más detalles

Los triángulos y su clasificación

Los triángulos y su clasificación Unidad 5 Tema 12 Los triángulos y su clasificación 1. Clasifico los triángulos según la medida de sus lados y de sus ángulos. a. Según sus lados: Según sus ángulos: 15 m 15 m b. Según sus lados: Según

Más detalles

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA El dibujo es una forma de comunicación que permite expresar de un modo sencillo cosas que son muy difíciles de explicar con las palabras. Piensa

Más detalles

DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS

DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS Escuela: SECUNDARIA TÉCNICA 40 Fecha: Prof.(a): MARÍA ESTELA GONZÁLEZ OCHOA. Grupo: Alumno(a): TERCER GRADO EXAMEN

Más detalles

APRENDAMOS A CONSTRUIR CON

APRENDAMOS A CONSTRUIR CON APRENDAMOS A CONSTRUIR CON En este manual encontrarás consejos prácticos para que aprendas más sobre construcción, ponlos en práctica y construye siempre con materiales de calidad, construye con Construyendo

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

UN COBERTIZO DE MADERA

UN COBERTIZO DE MADERA 3 nivel dificultad IDEAS Y SUGERENCIAS PA-IS31 CÓMO CONSTRUIR? UN COBERTIZO DE MADERA En las terrazas se puede hacer como techumbre un cobertizo o pérgola, una estructura de madera, que junto con otorgar

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

Terraza. Diseño simple Fácil construcción Crea acogedor ambiente. Serie Cómo Hacer proyectos.

Terraza. Diseño simple Fácil construcción Crea acogedor ambiente. Serie Cómo Hacer proyectos. 9 Serie Cómo Hacer proyectos Terraza Diseño simple Fácil construcción Crea acogedor ambiente www.araucosoluciones.com Serie Cómo Hacer Terraza Características Una terraza cambia la fisonomía de una casa,

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

EXPRESIÓN. Profesor: Julio Serrano

EXPRESIÓN. Profesor: Julio Serrano EXPRESIÓN GRÁFICA Profesor: Julio Serrano Materiales e Instrumentos Para la realización de dibujos se necesita un soporte, generalmente papel, e instrumentos de trazado, como lápices, plumas o rotuladores

Más detalles

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:

Más detalles

PRACTICA No. 01. Manejo y uso de instrumentos secundarios

PRACTICA No. 01. Manejo y uso de instrumentos secundarios PRACTICA No. 01 Manejo y uso de instrumentos secundarios Objetivo de la practica Solución de problemas elementales en el campo, mediante el uso de los instrumentos secundarios. (Estacas, fichas o agujas

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA GUIA DE ÁLGEBRA Y TRIGONOMETRÍA 1ª Fase Nombre del alumno: No. de Cta.

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMIREZ CALZADA GUIA DE ÁLGEBRA Y TRIGONOMETRÍA 1ª Fase Nombre del alumno: No. de Cta. UNIVERSIDD UTÓNOM DEL ESTDO DE MÉXICO PLNTEL IGNCIO RMIREZ CLZD GUI DE ÁLGER Y TRIGONOMETRÍ 1ª Fase Nombre del alumno: No. de Cta.: Nombre del profesor: Grupo: DESIGULDDES. Resuelve los ejercicios en hojas

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

UNIDAD 1 Estadimetría

UNIDAD 1 Estadimetría UNIDAD 1 Estadimetría La estadimetría es un método que sirve para medir distancias y diferencias de elevación indirectamente, es rápido pero su precisión no es muy alta. Este procedimiento se emplea cuando

Más detalles

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO

Más detalles

PROF: Jesús Macho Martínez

PROF: Jesús Macho Martínez DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores

Más detalles

C onstrucción de triángulos

C onstrucción de triángulos C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Manejo de las herramientas de Dibujo

Manejo de las herramientas de Dibujo Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

Teorema de Pitágoras Distancia y Puntos Medios

Teorema de Pitágoras Distancia y Puntos Medios Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Tabla de Contenidos Slide 2 / 78 Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide

Más detalles

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS 1.INSTRUMENTOS Lápices Son los principales instrumentos de trazado. Se fabrican en madera y llevan en su interior

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales.

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Ayudándote de la trama cuadrada de lado cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Comprueba que las dos figuras siguientes son semejantes: 3 Los lados

Más detalles

MECANO. Alumno: Fecha. 28 cm. 22 cm. 8 tiras. 6 cm 4 cm 20 cm. 8 tiras. 8 cm. 16 cm. 4 cm 3 cm 3 cm 14 cm. 12 cm. 7 cm 4 cm

MECANO. Alumno: Fecha. 28 cm. 22 cm. 8 tiras. 6 cm 4 cm 20 cm. 8 tiras. 8 cm. 16 cm. 4 cm 3 cm 3 cm 14 cm. 12 cm. 7 cm 4 cm 4R 2A 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 32 cm 4 cm 6 cm 4 cm 4 cm 6 cm 4 cm 28 cm V2 B2 4 cm 7 cm 7 cm 4 cm 22 cm 4 cm 6 cm 8 tiras 6 cm 4 cm 20 cm B1 2R 18 cm 16 cm 8 tiras A 4 cm 3 cm 3 cm 4 cm

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: geo2fran@gmail.com Sitio web: www.jfvc.wordpress.com 9.1 Criterios para medir con cinta Se usa para de levantamientos topográficos y mediciones en general. Las cintas métricas

Más detalles

Alumna(o): Grupo: N.L

Alumna(o): Grupo: N.L MISCELANEA DE MATEMATICAS FEBRERO CICLO ESCOLAR 2012-2013 Alumna(o): Grupo: N.L Resuelve los siguientes problemas 1.-Mide las dimensiones del siguiente rectángulo. Cuál es el área de la siguiente figura?

Más detalles

PUNTO DE DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA. El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela.

PUNTO DE DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA. El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela. PUNTO DE DIVISIÓN DE UN SEGMENTO EN UN RZÓN DD El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela. Cómo se haría para dividir el lado en partes iguales, sin

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa. TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.

Más detalles

MANUAL DE ARMADO. SAMM COLOMBIA S.A.S. Tel.: Cra. 67 No Bogotá, Colombia

MANUAL DE ARMADO. SAMM COLOMBIA S.A.S. Tel.: Cra. 67 No Bogotá, Colombia MANUAL DE ARMADO SAMM COLOMBIA S.A.S. Tel.: 571-4143010 Cra. 67 No. 9-44 Bogotá, Colombia www.sammcolombia.com COMPONENTES DEL SISTEMA ROSETA Fabricada en lámina HR de 9mm de espesor Para tubo de 48mm.

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

PERSPECTIVAS PARALELAS:

PERSPECTIVAS PARALELAS: Perspectivas - Principios operativos básicos 1 PERSPECTIVAS PARALELAS: Principios generales de construcción Las perspectivas paralelas son de gran utilidad para el trabajo rápido a mano alzada y para visualizar

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

Lección 2 Area del círculo Eloísa en el taller de costura tiene que elaborar un mantel circular de dos metros de diámetro.

Lección 2 Area del círculo Eloísa en el taller de costura tiene que elaborar un mantel circular de dos metros de diámetro. Lección 2 Area del círculo Eloísa en el taller de costura tiene que elaborar un mantel circular de dos metros de diámetro. Eloísa utilizó una pieza de tela de 2 m de lado para la elaboración del mantel.

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

MUEBLES CON TRIÁNGULOS ENSAMBLADOS

MUEBLES CON TRIÁNGULOS ENSAMBLADOS 1 nivel dificultad ideas y sugerencias MU-is45 CÓMO CONSTRUIR? MUEBLES CON TRIÁNGULOS ENSAMBLADOS En este proyecto queremos mostrarles un sistema para hacer muebles que es súper fácil de replicar, y muy

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo unidades de medida CLASE 4 CUADERNO DE TRABAJO Cuaderno de Trabajo, Matemática

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: CILENA MARIA GOMEZ BASTIDAS TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 139

6Soluciones a los ejercicios y problemas PÁGINA 139 ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?

Más detalles

CUADERNO DEL ALUMNO/A

CUADERNO DEL ALUMNO/A 6º Primaria Curso 2013/14 CUADERNO DEL ALUMNO/A ACTIVIDADES INICIALES DE MATEMÁTICAS APELLIDOS: NOMBRE: Nº: FECHA: 1. Completa con cifras o letras según corresponda. 870.400: Ochenta y tres mil cuatrocientos

Más detalles

Cálculo de un lado en un triángulo rectángulo.

Cálculo de un lado en un triángulo rectángulo. Cálculo de un lado en un triángulo rectángulo. Ejercicio 2.1. Halla la medida, en metros, de la hipotenusa de un triángulo rectángulo, cuyos catetos miden 3 y 4 metros. Ejercicio 2.2 Halla la medida, en

Más detalles

Círculo y Circunferencia

Círculo y Circunferencia 03 Lección Círculo y Circunferencia Estudio Identifica y traza las rectas y segmentos de la circunferencia. En Presentación de Contenidos se estudia la diferencia entre circunferencia y círculo y las rectas

Más detalles

NOCIONES DEL TRAZADO

NOCIONES DEL TRAZADO NOCIONES DEL TRAZADO 1.- Objeto del trazado. 2.- Clases de trazado. 3.- Barnices de trazar. 4.- Instrumentos de trazado. 5.- Soportes. 6.- Guías. 7.- Instrumentos de medida empleados en el trazado. 8.-

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Nombre Fecha #1 Exit Tickets 5.5

Nombre Fecha #1 Exit Tickets 5.5 Nombre Fecha #1 1. Cuál es el volumen de las figuras ilustradas abajo? 2. Dibuja la ilustración de una figura con un volumen de 3 unidades cúbicas en la página punteada. Nombre Fecha # 2 1. Si tuvieras

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS FUNIONES TRIGONOMÉTRIS 1. Determina los valores faltantes en la siguiente tabla aplicando el teorema de Pitágoras y/o funciones trigonométricas: Funciones trigonométricas Lados Ángulos a b c 10 1 7 13

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

Estuvieron sus opiniones cercanas a este hecho?

Estuvieron sus opiniones cercanas a este hecho? Dibujen en una hoja cuadriculada un triángulo y completen un rectángulo de tal manera que el triángulo quede dentro, como en la figura. Calculen en cm 2 el área aproximada del triángulo. Calculen en cm

Más detalles

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRIÁNGULO, HEXÁGONO Y DODECÁGONO nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-4 A continuación, con

Más detalles

PLANIFICACION DE CLASE

PLANIFICACION DE CLASE PLANIFICACION DE CLASE Fecha Profesora tutora Elizabeth Scheggiati Liceo Solymar I Grupo 3º UNO Practicante Sandra Rodríguez Tema Teorema de Pitágoras. Tiempo- 8 módulos. Objetivos generales: Trabajar

Más detalles

Club GeoGebra Iberoamericano 5 CUADRILÁTEROS

Club GeoGebra Iberoamericano 5 CUADRILÁTEROS 5 CUADRILÁTEROS CUADRILÁTEROS 1. INTRODUCCIÓN En esta unidad te proponemos un viaje lleno de retos por el mundo de los cuadriláteros. Algunos miembros de esta familia ya te resultarán familiares: el cuadrado,

Más detalles

La Geometría del triángulo TEMA 5

La Geometría del triángulo TEMA 5 La Geometría del triángulo TEMA 5 Teoremas de Triángulos No Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar resultados que pueden

Más detalles

EQUIPOS ANTROPOMETRICOS

EQUIPOS ANTROPOMETRICOS Universidad de los Andes. Facultad de Medicina. Escuela de Nutrición y Dietética. Departamento de Nutrición Social. Evaluación Nutricional. EQUIPOS ANTROPOMETRICOS Profa Yurimay Quintero TIPOS DE EQUIPOS

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

UNIDAD 12. CUADRILÁTEROS

UNIDAD 12. CUADRILÁTEROS UNIDAD 12. ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... Un cuadrilátero puede ser:, si tiene dos pares de lados

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Actividad Reconociendo lo invariante en figuras simétricas

Actividad Reconociendo lo invariante en figuras simétricas Actividad 37.1. Reconociendo lo invariante en figuras simétricas Construir figuras simétricas respecto de un eje y describir las propiedades que se conservan. Recuerda que la simetría axial o simetría

Más detalles

Matemática 3 año

Matemática 3 año Trabajo Práctico N 7: Razones trigonométricas Matemática 3 año - 2016 1) Un arquitecto tiene que hacer la maqueta de una rampa. Para eso comienza dibujando un triángulo rectángulo ABC, que cumple con estas

Más detalles

COLEGIO JORBALÁN-LA CARO II RELIGIOSAS ADORATRICES PREESCOLAR, PRIMARIA Y BACHILLERATO ACADÉMICO CON ESPECIALIDAD EN COMERCIO

COLEGIO JORBALÁN-LA CARO II RELIGIOSAS ADORATRICES PREESCOLAR, PRIMARIA Y BACHILLERATO ACADÉMICO CON ESPECIALIDAD EN COMERCIO HABILITACIÓN ANUAL DE GEOMETRÍA - 2016 GRADO SÉPTIMO ÁREA: Matemáticas ASIGNATURA: Geometría DOCENTE: Lic. Ángela González NOMBRE: Cód. FECHA: INSTRUCCIONES: a. Lea con atención los enunciados de cada

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles